Introduction to LATEX

Dr. Mutua Kilai, PhD

May-August 2024

Department of Pure and Applied Sciences

Motivation

The ideal situation occurs when the things we regard as beautiful are also regarded by other people as useful ~ Donald Knuth

(!) Goal

Making your Math look good

⚠ Disclaimer

This is just an introduction to the basics of typesetting in Maths.

Getting Started

- LaTex is a typesetting system suitable for producing scientific and mathematical documents
 - i. LaTex enables authors to typeset and print their work
 - ii. LaTex is pronounced as "Lay-Tech"
 - iii. TeX is the typesetting engine used by LaTeX

LaTex Pros and Cons Advantages

- Math is displayed nicely and easy to edit
- Required in post-graduate courses
- Good for writing research articles

Cons

There is a steep learning curve

Be prepared to give up along the way but don't quit the learning process.

Installation

- For installation on your own machine you should consult the following links:
 - MikTEX website: https://miktex.org/download
 - TeXWorks Website: http://www.tug.org/texworks/
 - TeXStudio Website: https://www.texstudio.org/

LaTeX Editors General Editors

- Sublime Text Editor
- Notepad++

LaTeX Editors

- TeXStudio
- TeXmaker
- TeXWorks

Browser Editors

- Overleaf
- Authorea

(!) Important

The advantage of browser editors is that it allows multiple users to collaborate on a single document

(i) Note

Every student to create an account at **Overleaf**. We will use this for our demonstrations in this class.

Structure

```
1 \documentclass{...}
2 \usepackage{...}
3 \begin{document}
4 ...
5 ...
6 ...
7 ...
8 ...
9 ...
10 ...
11 ...
12 ...
13 ...
14 ...
15 ...
16 ...
17 \end{document}
```

- The area between \documentclass{...} and \begin{document} is called the preamble. It normally contains the commands that affect the entire document.
- After the preamble the text of your document is enclosed between two commands which identify the beginning and the end of the actual document.

Document Class

- 1 \documentclass[options] {class}
- 1 \documentclass[11pt,twoside,a4paper] {article}
- LaTeX needs to know the **type of document** the author wants to create.
- class specifies the type of document to be created.
- The options parameter customizes the behaviour of the document class

Document Classes

- article: For articles in scientific journals, presentations, short reports etc
- IEEEtran: For articles with the IEEE transaction format
- proc: A cass for proceedings based on
 the article class
- minimal: It only sets a page size and a base font. Used for debugging purposes

- report: For longer reports containing several chapters, small books, thesis
- book: For real books
- beamer: For writing presentations
- letter: For writing letters
- slides: For slides

Common Option for Document Class

- 10pt, 11pt, 12pt: Sets the size of the main font in the document
- a4paper, letterpaper: Defines the paper size. Other options are a5paper, b5paper, executivepaper, legalpaper
- titlepage, notitlepage: Specifies whether a new page should be started after the document title or not
- onecolumn, twocolumn: Instructs LaTeX to typeset the document in one or two columns
- twoside, oneside: Specifies whether double or single sided output should be generated.

Cont'd

• landscape: Changes the layout of the document to print in landscape mode

Packages

```
1 \usepackage[options]{package}
2
3 \documentclass[11pt, a4paper]{report}
4
5 \usepackage{color}
6
7 \begin{document}
8 ...
9 ...
10 \end{document}
```

 A comprehensive list of packages and documentation can be found http://www.ctan.org/

- You can enhance the caabilities of LaTeX using packages
- These packages are defined in the preamble section of the document.
- package is the name of the package
- Options are a list of keywords that trigger special features in the package
- Options are not always necessary

Some useful packages

- \usepackage{amsmath} most important for math environments
- \usepackage{graphicx} essential for inserting figures
- \usepackage[a4paper]{geometry} adjust margins of pages
- \usepackage{hyperref} makes citations clickable in pdf document

(i) Note

Since we are in Mathematics, we will explore several packages that make our typsetting easier.

Title Page

```
1 \title{Title Here}
2 \author{Mutua Kilai \\
3 Department of Pure and Applied Sciences\\
4 Kirinyaga University \\
5 \texttt{samkmutua@gmail.com}}
6 \date{\today}
7 \maketitle
```

- The double backslash \\ is the command for a forced line break
- The \texttt command formats the email address using a mono-spaced font
- The \today command is used to insert the current date
- To omit the date simply leave the braces empty

Abstract

```
1 \documentclass{article}
2 \begin{document}
3 \begin{abstract}
4 Here is whereto have your abstract
5 \end{abstract}
6 \end{document}
```

- Appears at the top of the main body of the document but before the other sections.
- Available for the article and report classess but not the book class.

Sections

- 1 \documentclass{article}
- 2 \begin{document}
- 3 \section{Introduction}
- 4 Some text here
- 5 \section{Objectives}
- 6 \subsection{Specific Objectives}
- 7 \subsubsection{Research Questions}
- 8 \end{document}

- Sections can be used to help structure a document to make it more readable
- Think of these like chapters or section headings
- Text placed in the brackets will appear as headings on the document
- Sections are also useful when creating a contents page

Table of Contents, List of Figures, List of Tables

- Once you have your sections set correctly you can include them in the table of contents in your work.
- To do this simply insert the following command where you would like your table of contents to be:

```
1 \tableofcontents
```

• You are also able to include a list of figures or tables that you have specified in the document in a similar way using the following commands.

```
1 \listoffigures
```

2 \listoftables

Lists Bulleted List

1 \begin{itemize} 2 \item Item 1 3 \item Item 2 4 \end{itemize}

Description List

```
1 \begin{description}
2 \item[First] Item I
3 \item[Second] Item 2
4 \end{description}
```

Numbered List

```
1 \begin{enumerate}
2 \item Item 1
3 \item Item 2
4 \end{enumerate}
```

Nested Lists

```
1 \begin{enumerate}
2 \item Item I
3 \begin{enumerate}
4 \item Nested Item 1
5 \item Nested Item 2
6 \end{enumerate}
7 \item Item 2
8 \end{enumerate}
```


Labels and Referencing

```
1 \section{Hello}
2 \label{sec:hello}
3 Hello
4 \section{Referencing}
5 Now we can refer to section \ref{sec:hello}
```

- You can label and reference your sections and pretty much your object in your document using the \label command
- You can give a page reference in a similar way by using the \pageref{marker} command
- Tables, Figures, Equations are referenced in the same manner.

Tables

```
1 \begin{tabular}[pos]{table spec}
2 ...table here...
3 \end{tabular}
```

- The table spec argument tells LaTeX the alignment to be used in each column and the vertical lines to insert
- The optional parameter pos can be used to specify the vertical position of the table relative to the baseline of the surrounding text

Creating a Simple Table in LaTeX

```
1 \begin{center}
2 \begin{tabular}{ c c c }
3   1 & 2 & 3 \\
4   4 & 5 & 6 \\
5   7 & 8 & 9
6 \end{tabular}
7 \end{center}
```

- The tabular environment is the default LaTeX method to create tables.
- You must specify a parameter here we use {c c c} which tells LaTeX there are three columns and the text inside each one of them must be centered.

Positioning Tables

- h will place the table here approximately
- t Positioning the table at the top of the page
- b Position the table at the bottom of the page
- p puts the table in a special page for tables only
- ! overide internal LaTeX parameters
- H place the table at this precise location, pretty much like h!
- \centering Centres the table relative to the float container element

Captions, Labels and References in Tables

```
1 \documentclass{article}
 2 \begin{document}
 3 Table \ref{table:1} is an example of a referenced \LaTeX{} element.
 5 \begin{table}[h!]
 6 \centering
 7 \begin{tabular}{||c c c c||}
 8 \hline
 9 Col1 & Col2 & Col2 & Col3 \\ [0.5ex]
10 \hline\hline
11 1 & 6 & 87837 & 787 \\
12 2 & 7 & 78 & 5415 \\
13 3 & 545 & 778 & 7507 \\
14 4 & 545 & 18744 & 7560 \\
15 5 & 88 & 788 & 6344 \\ [1ex]
16 \hline
17 \end{tabular}
18 \caption{Table to test captions and labels.}
10 \ 1 a b a 1 ( + a b 1 a a 1 )
```


Cont'd

- \caption{} gives the caption of the table
- \label{} If you need to reference the table within your document set a label with this command
- \ref{table:1} This code will be replaced by the number corresponding to the referenced table.

! Important

For ease of creating Latex Tables, use this online generator https://www.tablesgenerator.com/

 All Tables in Academia have to be in APA style. We use the booktabs package to facilitate this.

Mathematical Expressions

Introduction

- LaTeX's features for typesetting mathematics make it a compeling choice for writing technical documents.
- This lecture shows the most basic commands needed to get started with writing maths using LaTeX
- Writing basic equations in LaTeX is straightforward, for example

```
\lambda begin{document}

Consider the equation \(x^2 + y^2 = z^2\)

consider the equation \(x^2 + y^2 = z^2\)
```

Consider the equation $x^2+y^2=z^2$

Mathematical Modes

- LaTeX allows two writing modes for mathematical expressions:
 - i. inline math mode: Used to write formulas that are part of paragraph
 - ii. display math mode: Used to write expressions thatare not part of a paragraph and are therefore put on separate lines

Inline Math Mode

You can use any of these delimiters to typeset your math in inline mode:

```
a. \(...\)b. $...$c. \begin{math}...\end{math}
```

They all work and the choice is a matter of taste.

Display Math Mode

Use one of these constructions to typeset maths in display mode:

```
i. \[\]ii. \begin{displaymath}...\end{displaymath}iii. begin{equation}...\end{equation}
```


Cont'd

 Display math mode has two versions which produce numbered or unnumbered equations.

```
1 # numbered equations
2 \begin{equation}\label{eqn1}
3 y = mx +c
4 \end{equation}
5
6 Equation \ref{eqn1} shows
```

$$y = mx + c$$

```
1 # unnumbered equations
2
3 \begin{equation*}
4 y = mx +c
5 \end{equation*}
```

$$y = mx + c$$

Guide for Math Symbols

For list of Greek Letters see here

Matrices

amsmath matrix environments

- The amsmath package provides commands to typeset matrices with different delimiters.
- Once you have loaded \usepackage{amsmath} in your preamble, you can use the following environments in your math environments

plain

```
1 \begin{matrix}
2 1 & 2 & 3\\
3 a & b & c
4 \end{matrix}
```

 $1 \quad 2 \quad 3$

a b c

Cont'd

Parentheses: round brackets

```
1 \begin{pmatrix}
2 1 & 2 & 3\\
3 a & b & c
4 \end{pmatrix}
```

$$\left(egin{array}{ccc} 1 & 2 & 3 \ a & b & c \end{array}
ight)$$

Brackets: square brackets

```
1 \begin{bmatrix}
2 1 & 2 & 3\\
3 a & b & c
4 \end{bmatrix}
```

```
\left[ egin{array}{ccc} 1 & 2 & 3 \ a & b & c \end{array} 
ight]
```


Brackets: curly brackets

```
1 \begin{Bmatrix}
2 1 & 2 & 3\\
3 a & b & c
4 \end{Bmatrix}
```

$$\left\{egin{array}{ccc} 1 & 2 & 3 \ a & b & c \end{array}
ight\}$$

pipes

```
1 \begin{vmatrix}
2 1 & 2 & 3\\
3 a & b & c
4 \end{vmatrix}
```

```
egin{bmatrix} 1 & 2 & 3 \ a & b & c \end{bmatrix}
```


Inline Matrices

```
1 \documentclass{article}
2 \usepackage{amsmath}
3 \begin{document}
4 \noindent Trying to typeset an inline matrix here:
5 $\begin{pmatrix}
6 a & b\\
7 c & d
8 \end{pmatrix}$,
9 but it looks too big, so let's try
10 $\big(\begin{smallmatrix}
11 a & b\\
12 c & d
13 \end{smallmatrix}\big)$
14 instead.
15 \end{document}
```

Trying to typeset an inline matrix here: $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ but it looks too big, so let's try

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ instead

Subscripts and superscripts

Introduction

- The use of superscripts and subscripts is very common in mathematical expressions involving exponents, indexes and in some special operators.
- This section explains how to write superscripts and subscripts in simple expressions, integrals, summations etc

Definite Integrals

1 \$\int\limits 0^1 x^2 + y^2 dx\$\$

$$\int\limits_{0}^{1}x^{2}+y^{2}dx$$

Note

i Note

• By convention, superscripts and subscripts in LaTeX are created using the characters ^ and _ respectively.

Operators using subscripts and superscripts

- Some mathematical operators may require subscripts and superscripts.
- The most frequent cases are those of the integral \int and summation \sum
 operators whose bounds are typset precisely with superscripts and subscripts.

1
$$\$$$
 \sum_{i=1}^{\infty} \frac{1}{n^s}
2 = \prod_p \frac{1}{1 - p^{-s}} \\$\$

$$\sum_{i=1}^\infty rac{1}{n^s} = \prod_p rac{1}{1-p^{-s}}$$

More Examples

Intersection

$$\cap_{i=1}^n$$

union

$$\bigcup_{i=1}^{n}$$

double subscript

$$a_{n_i}$$

Fractions and Binomials

This section explains how to typset binomials and fractions

```
1 The binomial coefficient, \(\binom{n}{k}\), is defined by the expression:
2 \[
3 \binom{n}{k} = \frac{n!}{k!(n-k)!}
4 \]
```

The binomial coefficient, $\binom{n}{k}$, is defined by the expression:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

In LaTeX ensure you load the amsmath package in the document preamble

Displaying Fractions

 The visual appearance of fractions will change depending on whether they appear inline, or as part of paragraph or stand alone.

```
1 Fractions can be used inline within the paragraph text, for
```

- 2 example \$\frac{1}{2}\$, or displayed on their own line,
- 3 such as this:
- 4 \$\$\frac{1}{2}\$\$

Fractions can be used inline within the paragraph text, for example $\frac{1}{2}$, or displayed on their own line, such as this:

$$\frac{1}{2}$$

Aligning Equations with amsmath

- The amsmath package provides a handful of options for displaying equations.
- You can choose the layout that better suits your document.

```
1 \begin{equation} \label{eq1}
2 \begin{split}
3 A & = \frac{\pi r^2}{2} \\
4 & = \frac{1}{2} \pi r^2
5 \end{split}
6 \end{equation}
```

$$egin{aligned} A &= rac{\pi r^2}{2} \ &= rac{1}{2} \pi r^2 \end{aligned}$$

Writing a Single Equation

- To display a single equation you have to use the equation* or equation
 environment depending on whether you want the equation to be numbered or
 not.
- Additionally you might add label for future reference within the document

```
1 \begin{equation} \label{eu_eqn}
2 e^{\pi i} + 1 = 0
3 \end{equation}
4
5 The beautiful equation \ref{eu_eqn} is known as the Euler equation.
```

$$e^{\pi i} + 1 = 0$$

Displaying Long Equations

- For equations longer than a line use the multiline environment.
- Insert a double backslash to set a point for the equation to be broken.
- The first part will be aligned to the left and the second part will be displayed in the next line and aligned left

```
1 \begin{multline*}
2 p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3\\
3 - 12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3
4 \end{multline*}
```

$$p(x) = 3x^6 + 14x^5y + 590x^4y^2 + 19x^3y^3 \ -12x^2y^4 - 12xy^5 + 2y^6 - a^3b^3$$

Aligning Several Equations

 If there are several equations that you need to align vertically the align environment will do it.

```
1 \begin{align*}
2 2x - 5y &= 8 \\
3 3x + 9y &= -12
4 \end{align*}
```

$$2x - 5y = 8$$
$$3x + 9y = -12$$

Operators

Trigonometric Functions

- Characters in mathematical mode are usually shown in italics but sometimes certain function name require different formatting which can be accomplished by using operators defined in LaTeX
- Trigonometrical functions, logarithms, and others can be written in a document by means of some special commands.

```
1 Examples of mathematical operators:
2 $$\sin(a + b) = \sin a \cos b + \cos b \sin a$$
```

$$\sin(a+b) = \sin a \cos b + \cos b \sin a$$

Operators in different Context

Some operators can take parameters that are handled in a special way for instance limits

```
1 Testing notation for limits
2 $$\lim_{h \to 0 } \frac{f(x+h)-f(x)}{h}$$
3 This operator changes when used alongside
4 text $\lim_{h \to 0} (x-h)$.
```

Testing notation for limits

$$\lim_{h o 0}rac{f(x+h)-f(x)}{h}$$

This operator changes when used alongside text $\lim_{h o 0}(x-h)$.

Spacing in math mode

Adjusting LaTeX default math mode spacing can be useful in certain situations

```
1 Assume we have the next sets 2 \ = \{ z \in \mathbb{C}\, |\, |z| < 1 \} \quad \textrm{and} \quad S_2=\partial{S}$$
```

Assume we have the next sets

$$S = \{z \in \mathbb{C} \, | \, |z| < 1\} \quad ext{and} \quad S_2 = \partial S$$

Spaces

The example below contains a complete list of spaces inserted using various commands

```
1 Spaces in mathematical mode.
2
3 \begin{align*}
4 f(x) &= x^2\! +3x\! +2 \\
5 f(x) &= x^2+3x+2 \\
6 f(x) &= x^2\, +3x\, +2 \\
7 f(x) &= x^2\: +3x\: +2 \\
8 f(x) &= x^2\: +3x\: +2 \\
9 f(x) &= x^2\ +3x\\ +2 \\
10 f(x) &= x^2\quad +3x\quad +2 \\
11 f(x) &= x^2\quad +3x\quad +2 \\
12 \end{align*}
```


Output

Spaces in mathematical mode.

$$egin{aligned} f(x) &= x^2 + 3x + 2 \ \end{pmatrix}$$

Intregrals

- Integrals expressions can be added using the \int_{lower}^{upper} command
- Note that integral expression may seems a little different in inline and display math mode

1 Integral $\pi \{a\}^{b} x^2 \, dx$ inside text

Integral $\int_a^b x^2 \, dx$ inside text

Multiple Integrals

 To obtain double/triple/multiple integrals and cyclic integrals you must use amsmath

```
1 \begin{gather*}
2   \iint_V \mu(u,v) \,du\,dv
3  \\
4   \iiint_V \mu(u,v,w) \,du\,dw
5  \\
6   \iiiint_V \mu(t,u,v,w) \,dt\,du\,dv\,dw
7  \\
8   \idotsint_V \mu(u_1,\dots,u_k) \,du_1 \dots du_k
9 \end{gather*}
```


Output

$$\iint_V \mu(u,v) \, du \, dv$$
 $\iiint_V \mu(u,v,w) \, du \, dv \, dw$
 $\iiint_V \mu(t,u,v,w) \, dt \, du \, dv \, dw$
 $\int \cdots \int_V \mu(u_1,\ldots,u_k) \, du_1 \ldots du_k$

Inserting Images

- In this section we explain how to include images in the most common formats how to shrink, enlarge and rotate them.
- A simple example is given in the code below

```
1 \documentclass{article}
2 \usepackage{graphicx}
3 \graphicspath{ {./images/} }
4
5 \begin{document}
6 The universe is immense and it seems to be homogeneous,
7 in a large scale, everywhere we look at.
8
9 \includegraphics{universe}
10
11 There's a picture of a galaxy above
12 \end{document}
```


Changing image size

 You can specify length, height etc we can pass those contents in the following format:

1 \includegraphics[width=5cm, height=4cm]{logo}

Positioning

The positioning is same as the one for tables:

```
1 \begin{figure}[h]
2 \includegraphics[width=8cm]{Plot}
3 \end{figure}
```

- Sample include:
 - i. h place the float here
 - ii. t Position at the *top* of the page
 - iii. b position at the *bottom* of the page
 - iv. ! override internal LaTeX parameters

Wrapping text around figures

- It's also possible to wrap the text around a figure.
- When the document contains small pictures this makes it look better

```
1 \begin{wrapfigure}{r}{0.25\textwidth} %this figure will be at the right
2 \centering
3 \includegraphics[width=0.25\textwidth]{mesh}
4 \end{wrapfigure}
5
6 There are several ways to plot a function of two variables,
7 depending on the information you are interested in. For
8 instance, if you want to see the mesh of a function so it
9 easier to see the derivative you can use a plot like the
10 one on the left.
```

 For the commands to work you have to import the wrapfig package in the document preamble.

Position parameters

- r R right side of the text
- 1 L left side of the text
- i I inside edge near the binding (two side document)
- o 0 outside edge-far from the binding

! Important

The upper version allows the figure to float. The lowercase version means exactly here

Captions in Figures

```
1 \begin{figure}[h]
2 \caption{Example of a parametric plot ($\sin (x), \cos(x), x$)}
3 \centering
4 \includegraphics[width=0.5\textwidth]{spiral}
5 \end{figure}
```


Labels and Cross References

 Figures, just as many other elements in a LATEX document (equations, tables, plots, etc) can be referenced within the text.

```
1 \begin{figure}[h]
2    \centering
3    \includegraphics[width=0.25\textwidth]{mesh}
4    \caption{a nice plot}
5    \label{fig:mesh1}
6 \end{figure}
```

As you can see in the figure \ref{fig:mesh1}, the function grows near 0. Also, in the page \pageref{fig:mesh1} is the same example.

Theorems and Proofs

Introduction

- Mathematical documents include elements that require special formatting and numberings such as:
 - i. Theorems
 - ii. Definitions
 - iii. Propositions
 - iv. Remarks
 - v. Corollaries
 - vi. lemmas

Theorems

 Numbered environments in LaTeX can be defined by means of the command \newtheorem which takes two arguments:

```
1 \newtheorem{theorem}{Theorem}
```

- The first one is the name of the environment that is defined
- The second one is the word that will be printed in boldface font at the beginning of the environment

Example

```
1 \documentclass{article}
2 \usepackage[english]{babel}
3 \newtheorem{theorem}{Theorem}
4 \begin{document}
5
6 \section{Introduction}
7 Theorems can easily be defined:
8
9 \begin{theorem}
10 Let \(f\) be a function whose derivative exists in every point, then \(f\)
11 is a continuous function.
12 \end{theorem}
13 \end{document}
```


Numbered theorems, definitions, corollaries and lemmas

 The numbering of the environments can be controlled by means of two additional parameters in the \newtheorem command

```
1 \newtheorem{theorem}{Theorem}[section]
 2 \newtheorem{corollary}{Corollary}[theorem]
 3 \newtheorem{lemma}[theorem]{Lemma}
 4 \begin{document}
 5 \section{Introduction}
 6 Theorems can easily be defined:
 7 \begin{theorem}
 8 Let \backslash (f \backslash) be a function ...
 9 \end{theorem}
10 \begin{corollary}
11 There's no right rectangle whose sides measure 3cm, 4cm, and 6cm.
12 \end{corollary}
13 \begin{lemma}
14 Given two line segments whose lengths are \(a\) and \(b\)
15 \end{lemma}
16 \end{document}
```


Unnumbered Theorem

 It can be useful to have an unnumbered theorem-like environment to add remarks, comments or examples to a mathematical document.

```
1 \documentclass{article}
2 \usepackage[english]{babel}
3 \usepackage{amsthm}
4 \newtheorem*{remark}{Remark}
5 \begin{document}
6 Unnumbered theorem-like environments are also possible.
7 \begin{remark}
8 This statement is true, I guess.
9 \end{remark}
10 \end{document}
```


Proofs

 Proofs are the core of mathematical papers and books and it is customary to keep them visually apart from the normal text in the document.

```
1 \documentclass{article}
 2 \usepackage[english] {babel}
 3 \usepackage{amsthm}
 4 \newtheorem{theorem} {Theorem} [section]
 5 \newtheorem{lemma}[theorem]{Lemma}
 6 \begin{document}
7 \section{Introduction}
8 \begin{lemma}
9 Given two line segments whose lengths are \(a\) and \(b\) respectively there
10 is a real number \(r\) such that \(b=ra\).
11 \end{lemma}
12 \begin{proof}
13 To prove it by contradiction try and assume that the statement is false,
14 proceed from there and at some point you will arrive to a contradiction.
15 \end{proof}
16 \end{document}
```


Page Numbering

Introduction

- Document page numbers can be typeset using a particular style such as:
 - i. Arabic numerals
 - ii. Roman numerals

- They can also be typeset at a particular *page location* usually within headers and footers.
- The style of page numbers can be changed by the \pagenumbering command
- The location of page numbers can be changed using the fancyhdr package

Setting the style of page numbers

Examples

```
1 \begin{document}
2 \tableofcontents
3 \newpage
4 \section{Uppercase Roman}
5 \pagenumbering{Roman}% Capital 'R': uppercase Roman numerals
6 \section{Lowercase Roman} % lowercase Roman numerals
7 \pagenumbering{roman}
8 \section{Arabic numbers}
9 \pagenumbering{arabic} % Arabic/Indic page numbers
10 \section{Lowercase alphabetic}
11 \pagenumbering{alph} % Lowercase alphabetic page "numbers"
12 \section{Uppercase alphabetic}
13 \pagenumbering{Alph} % Uppercase alphabetic page "numbers"
14 \end{document}
```


Using two styles of page number

 The first few pages of a book/thesis are called the preliminary pages and are numbered using lowercase Roman numerals with the main pages being numbered using Arabic numerals.

Example

The following example demostrates:

```
1 \documentclass{book}
2 % The emptypage package prevents page numbers and
3 % headings from appearing on empty pages.
4 \usepackage{emptypage}
 5 \begin{document}
 6 \frontmatter %Use lowercase Roman numerals for page numbers
7 \chapter*{Foreword}
 8 \addcontentsline{toc}{chapter}{Foreword}
9 The Foreword is written by someone who is not the book's author.
10 \chapter*{Preface}
11 \addcontentsline{toc}{chapter}{Preface}
12 The Preface is written by the book's author.
13 \tableofcontents
14 \mainmatter % Now Use Arabic numerals for page numbers
15 \chapter{First Chapter}
16 This will be an empty chapter...
17 \section{First section}
18 Some text would be good.
10 \ about an ( mba accord about an)
```


Using Colors in LaTeX

- This section explains how to use the color or xcolor packages
- xcolor is more flexible and supports a large number of color models so is the recommended approach.

```
1 \documentclass{article}
2 \usepackage{xcolor}
3 \begin{document}
4 This example shows some instances of using the \texttt{xcolor} package to change the color of elements in \Lambda
5 \begin{itemize}
6 \color{blue}
7 \item First item
8 \item Second item
9 \end{itemize}
10 \noindent
11 {\color{red} \rule{\linewidth}{0.5mm}}
12 \end{document}
```


References and Citations

(!) Important

Ensure that you have installed **JabRef** in your PC

• This section explains how to use natbib to format and cite bibliographic sources.

Example

```
1 \usepackage{natbib}
2 \title{Bibliography management: \texttt{natbib} package}
3 \author{Sam}
4 \date {April 2024}
5 \begin{document}
6 \maketitle
7 This document is an example of \texttt{natbib} package using in bibliography
8 management. Three items are cited: \textit{The \LaTeX\ Companion} book
9 \cite{latexcompanion}, the Einstein journal paper \cite{einstein}, and the
10 Donald Knuth's website \cite{knuthwebsite}. The \LaTeX\ related items are
11 \cite{latexcompanion, knuthwebsite}.
12 \bibliography{sample}
13 \bibliographystyle{apa}
14 \end{document}
```


How to create the sample.bib file

- For ease of use the bib file is created from JabRef and saved in the same workspace as your tex file.
- A sample looks like:

Ease to use

From Google Scholar search the article you want to cite

• Select cite

Cont'd

Select BibTeX since we are using JabRef

```
@article{ogunleye2019xgboost,
   title={XGBoost model for chronic kidney disease diagnosis},
   author={Ogunleye, Adeola and Wang, Qing-Guo},
   journal={IEEE/ACM transactions on computational biology and bioinformatics},
   volume={17},
   number={6},
   pages={2131--2140},
   year={2019},
   publisher={IEEE}
}
```

 Copy the whole items and paste in appropriate JabRef Section under the field BibTeX source

You can then use the \cite{key} in LaTeX and the Reference will be included

Standard Entry Types

- article: Article from magazine or journal
- book: published book
- booklet: A work that is printed but has no publisher or sponsoring institution
- conference: An article in a conference proceedings
- inbook: A part of a book (section, chapter and so on)
- incollection: A part of a book having its own title

Cont'd

- inproceedings: An article in a conference proceedings
- manual: Technical documentation
- masterthesis: A Masters Thesis

Cont'd

- misc: Anything that does not fit any other type
- phdthesis: A PHD thesis
- proceedings: The same as conference
- techreport: Report published by institution
- unpublished: Document not formally published with author and title

Environment

An environment starts with \begin{name} and ends with the name \end{name}

```
1 \begin{name}
2 Your content here...
3 ...goes here...
4 \end{name}
```


Defining a new environment

 To define a new environment use the \newenvironment command which has the general form

```
1 \newenvironment{name}[numarg][optarg default]{begin def}{end def}
```

- i. name is the name of this user-defined argument
- ii. numarg is the number of arguments
- iii. optarg_defauly makes the first argument optional and provides a default value
- iv. begin_def is LaTeX code executed when the environment starts (opens)
- v. end_def is LaTeX code executed when the environment ends (closes)

Example

```
1 \documentclass{article}
 2 \newenvironment{boxed}
       {\begin{center}
       \begin{tabular}{|p{0.9\textwidth}|}
       \hline\\
       \\\\\hline
 9
       \end{tabular}
10
       \end{center}
11
12 \begin{document}
13 Now we can use the \texttt{boxed} environment in our document:
14 \begin{boxed}
15 This text is formatted within the \texttt{boxed} environment.
16 \end{boxed}
17 \end{document}
```


Remark

- The end of the LaTeX short introduction.
- Practice, practice and you will be a pro

